The Written Word
“There is no form of prose more difficult to understand and more tedious to read than the average scientific paper”
Francis Crick
2025
123.
Local dynamics control the C–CX3 (X = H and F) bond photodissociation in acetylacetones
Prahlad Roy Chowdhury, Basudha Deb, Monali Kawade, Amit Kumar Paul and G Naresh Patwari
J. Chem. Phys. 2025, Accepted
ChemRxiv 2024. DOI: 10.26434/chemrxiv-2024-ldpx6
122.
Role of Hartree-Fock Exchange in Spontaneous Proton Transfer Reactions
Arzoo and G. Naresh Patwari
J. Chem. Sci. 2025, 137, 6. DOI: 10.1007/s12039-024-02335-w
ChemRxiv 2024. DOI: 10.26434/chemrxiv-2024-jx2h1
2024
121.
Anharmonicity and Vibrational Stark Fields in Phosphinic Acid Dimers
Manjusha Boda and G. Naresh Patwari
ChemRxiv 2024. DOI: 10.26434/chemrxiv-2024-jppwm
120.
On Ambient-light-induced intermolecular Coulombic decay in unbound pyridine monomers
Shaivi Kesari, Amol Tagad and G. Naresh Patwari
arXiv 2024. DOI: 10.48550/arXiv.2408.02981
119.
A Hierarchical Method to Analyze Protein-DNA Interfaces
Amol Tagad and G. Naresh Patwari
bioRxiv 2024. DOI: 10.1101/2024.07.18.604047
118.
Role of Alkyl Chain Linker in the Conformational Preferences of N-phenylalkylsquaramates and bis-N,N'-diphenylalkylsquaramides
Aman Pandey and G. Naresh Patwari
J. Chem. Sci. 2024, 136, 90. DOI: 10.1007/s12039-024-02331-0
ChemRxiv 2024. DOI: 10.26434/chemrxiv-2024-944lx
117.
Machine Learned Potential Enables MD Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds
Pooja Sharma, Prahlad Roy Chowdhury, Amber Jain and G. Naresh Patwari
J. Phys. Chem. A 2024, 128, 10137–10142. DOI: 10.1021/acs.jpca.4c04703
116.
Molecular Association and Reactivity of the Pyridine Dimer Cation
Amol Tagad and G. Naresh Patwari
J. Phys. Chem. A 2024, 128, 9195–9200. DOI: 10.1021/acs.jpca.4c04912
ChemRxiv 2024. DOI: 10.26434/chemrxiv-2024-f5kkq
115.
Probing the Role of Solvent Configurations and Local Electric Fields on HX (X=F, Cl, Br and I) Dissociation
Bijaya Pathak, Manjusha Boda and G Naresh Patwari
J. Phys. Chem. B 2024, 128, 9829–9836. DOI: 10.1021/acs.jpcb.4c04472
114.
Mechanistic Variances in NO Release: Ortho vs. Meta Isomers of Nitrophenol and Nitroaniline
Prahlad Roy Chowdhury, Monali Kawade and G. Naresh Patwari
Chem. Commun. 2024, 60, 5431–5434. DOI: 10.1039/D4CC01497A
Part of Kaleidoscope 2023 ChemComm Collection
113.
Unraveling the Significance of Mg2+ Dependency and Nucleotide Binding Specificity of H-RAS
Amol Tagad and G. Naresh Patwari
J. Phys. Chem. B 2024, 128, 1618–1626. DOI: 10.1021/acs.jpcb.3c06998
112.
Dissociative Photoionization of Dimethyl- and Trimethyl- Pyridines at 266 nm: Dynamics of Methyl Radical Release
Sumitra Singh, Monali Kawade and G. Naresh Patwari
ACS Omega 2024, 9, 8173–8178. DOI: 10.1021/acsomega.3c08705
111.
Enticing a Proton using Single Ammonia Molecule as a Bait
Bijaya Pathak, Shaivi Kesari and G. Naresh Patwari
J. Phys. Chem. B 2024, 128, 1022–1028. DOI: 10.1021/acs.jpcb.3c06761
2023
110.
Ab-Initio Anharmonic Analysis of Complex Vibrational Spectra of Phenylacetylene and Fluorophenylacetylenes
in the Acetylenic and Aromatic C–H Stretching Region
Sumitra Singh, Qian-Rui Huang, Jake A. Tan, Jer-Lai Kuo and G. Naresh Patwari
J. Chem. Phys. 2023, 159, 104302. DOI: 10.1063/5.0160700
ChemRxiv 2023. DOI: 10.26434/chemrxiv-2023-7p62f
109.
Towards universal detection with 213 nm for velocity map imaging
Sumitra Singh, Monali Kawade, Prahlad Roy Chowdhury and G. Naresh Patwari
J. Chem. Sci. 2023, 135, 92. DOI: 10.1007/s12039-023-02211-z
108.
Photodegradation of Flutamide and Halogen Derivatives of Nitrobenzotrifluoride. The NO Release Channel
Namitha Brijit Bejoy and G. Naresh Patwari
J. Phys. Chem. A 2023, 127, 7168–7174. DOI: 10.1021/acs.jpca.3c03024
107.
Dynamics of Hydrogen Bond Breaking Induced by Outer Valance Intermolecular Coulombic Decay
Namitha Brijit Bejoy, Reman Kumar Singh, Nitin K. Singh, Balanarayan Pananghat and G. Naresh Patwari
J. Phys. Chem. Lett. 2023, 14, 5718–5726. DOI: 10.1021/acs.jpclett.3c01039
arXiv 2022. DOI: 10.48550/arXiv.2010.06494
106.
Dissociation of Endohedrally Encapsulated HCl/HBr in C60 and C70: 2 An Electric Field Perspective
Reman Kumar Singh and G. Naresh Patwari
J. Phys. Chem. B 2023, 127, 17, 3888–3893. DOI: 10.1021/acs.jpcb.3c00411
105.
Modulating the Roaming Dynamics for the NO Release in ortho-Nitrobenzenes.
Namitha Brijit Bejoy, Prahlad Roy Chowdhury and G. Naresh Patwari
J. Phys. Chem. Lett. 2023, 14, 2816-2822. DOI: 10.1021/acs.jpclett.3c00134
104.
Expanding the Horizon of Bio-Inspired Catalyst Design with Tactical Incorporation of Drug Molecules.
Gul Afshan, Santanu Ghorai, Surabhi Rai, Aman Pandey, Piyali Majumder, G. Naresh Patwari and Arnab Dutta
Chem. Eur. J. 2023, e202203730. DOI: 10.1002/chem.202203730
103.
Unraveling topoisomerase IA gate dynamics in presence of PPEF and its preclinical evaluation against multidrug-resistant pathogens.
Vikas Maurya, Raja Singh, Reman Kumar Singh, Stuti Pandey, Pooja Yadav, Palak Parashar, Rajni Gaind, Kshatresh Dutta Dubey, G. Naresh Patwari and Vibha Tandon
Commun. Biol. 2023, 6, 195. DOI: 10.1038/s42003-023-04412-1
2022
102.
Identification of Allosteric Hotspots regulating the ribosomal RNA-binding by Antibiotic Resistance-Conferring Erm Methyltransferases
Ruchika Bhujbalrao, Krishna Gavvala, Reman Kumar Singh, Juhi Singh, Christian Boudier, Sutapa Chakrabarti, G. Naresh Patwari, Yves Mély and Ruchi Anand
J. Biol. Chem. 2022, 298, 102208. DOI: 10.1016/j.jbc.2022.102208
101.
Non-Resonant Probing of the Methyl Fragment at 213 nm following 266nm Photolysis of Methyl Iodide
Monali Kawade, Sumitra Singh and G. Naresh Patwari
ChemRxiv 2022. DOI: 10.26434/chemrxiv-2022-6q4xb
100.
Role of Sugar Stereochemistry on Structural and Free Energy Landscape of Double-Stranded Nucleic Acids
Anuj Kumar, Reman Kumar Singh, Amol Tagad and G. Naresh Patwari
bioRxiv 2022. DOI: 10.1101/2020.08.15.252643
99.
Dynamics of Methyl Radical Formation Following 266 nm Dissociative Photoionization of Xylenes and Mesitylene
Namitha Brijit Bejoy, Monali Kawade, Sumitra Singh and G. Naresh Patwari
J. Phys. Chem. A 2022, 126, 12, 1960–1965. DOI: 10.1021/acs.jpca.1c10885
ChemRxiv 2021. DOI: 10.26434/chemrxiv-2021-r2d6j
98.
A Binary Matrix Method to Enumerate, Hierarchically Order and Structurally Classify Peptide Aggregation
Amol Tagad, Reman Kumar Singh and G. Naresh Patwari
J. Chem. Inf. Model 2022, 62, 6, 1585–1594. 10.1021/acs.jcim.2c00069
bioRxiv 2022. DOI: 10.1101/2021.11.29.470297
97.
Vibrational Stark Fields in Carboxylic Acid Dimers
Manjusha Boda and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2022, 24, 5879–5885. DOI: 10.1039/D1CP02211C
ChemRxiv 2022. DOI: 10.26434/chemrxiv-2022-56cd8
96.
Ultrafast Proton Transfer Reaction in Phenol–(Ammonia)n Clusters: An Ab-Initio Molecular Dynamics Investigation
Reman Kumar Singh, Rakesh Pant and G. Naresh Patwari
J. Phys. Chem. B 2022, 126, 1590–1597. DOI: 10.1021/acs.jpcb.1c09700
ChemRxiv 2022. DOI: 10.33774/chemrxiv-2021-pm752-v2
2021
95.
Is Dissociation of HCl in DMSO Clusters Bistable?
Debopriya Sadhukhan, Po-Jen Hsu, Jer-Lai Kuo and G. Naresh Patwari
J. Phys. Chem. A 2021. 125, 10351–10358. DOI: 10.1021/acs.jpca.1c08627
ChemRxiv 2021. DOI: 10.33774/chemrxiv-2021-9gx0c
94.
Photodissociation of o-xylene at 266 nm: Imaging the CH3 dissociation channel
Saurabh Mishra, Namitha Brijit Bejoy, Monali Kawade, Hari P. Upadhyaya and G. Naresh Patwari
J. Chem. Sci. 2021, 133 , 128. DOI: 10.1007/s12039-021-01988-1
93.
Hierarchy of π-Stacking Determines the Conformational Preference of Bis-Squaramates
Abhishek Singh, Reman Kumar Singh and G. Naresh Patwari
CrystEngComm 2021, 2021, 23, 5331–5336. DOI: 10.1039/D1CE00623A
ChemRxiv 2020, 13041830.v1 DOI: 10.26434/chemrxiv.13041830.v1
92.
Π-Stacking in Heterodimers of Propargylbenzene with (Fluoro)Phenylacetylenes
Aniket Kundu, Saumik Sen and G. Naresh Patwari
ACS Omega 2021, 6, 27, 17720–17725. DOI: 10.1021/acsomega.1c02385
91.
Dipole moment enhanced π−π stacking in fluorophenylacetylenes is carried over from gas-phase dimers to crystal structures propagated through liquid like clusters
Sumitra Singh, Po-Jen Hsu, Jer-Lai Kuo and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2021, 23, 9938–9947. DOI: 10.1039/D1CP00279A
90.
Understanding Fermi Resonances in the complex vibrational spectra of the methyl groups in methylamines
Qian-Rui Huang, Tomoya Endo, Saurabh Mishra, Bingbing Zhang, Li-Wei Chen, Asuka Fujii, Ling Jiang, G. Naresh Patwari, Yoshiyuki Matsuda and Jer-Lai Kuo
Phys. Chem. Chem. Phys. 2021, 23, 3739–3747. DOI: 10.1039/D0CP05745B
89.
Isolation of a Telluroxane Cluster [(R2TeO)(μ-TeO2)(OTeR2)][TeO(OH)2] (R=C6H5NNC6H4) Stabilized by Intra- and Intermolecular Secondary Bonding Interactions: Molecular and Electronic Structure Analysis
Rajesh Deka, Rakesh Pant, Anand Gupta G. Naresh Patwari, Harkesh B. Singh and Ray J. Butcher
Polyhedron. 2021, 198, 115037. DOI: 10.1016/j.poly.2021.115037
2020
88.
Vibrational Spectroscopic Signatures of Hydrogen Bond Induced NH Stretch-Bend Fermi-Resonance in Amines: The Methylamine Clusters and Other N–H···N Hydrogen-Bonded Complexes88.
Saurabh Mishra, Ha-Quyen Nguyen, Qian-Rui Huang, Chih-Kai Lin, Jer-Lai Kuo and G. Naresh Patwari
J. Chem. Phys. 2020, 153, 194301. DOI: 10.1063/5.0025778
87.
Nitridation Mechanism of Tantalum Clusters by Ammonia Molecules: The Origin of Bulk-nitride Composition of Group 5 Metals
Masashi Arakawa, G. Naresh Patwari and Akira Terasaki
Bull. Soc. Nano Sci. Tech. 2020, 19, 21–26.
86.
Dipole Moment Propels π-Stacking of Hetero-Dimers of Fluorophenylacetylenes
Aniket Kundu, Saumik Sen and G. Naresh Patwari
J. Phys. Chem. A 2020, 124, 7470–7477. DOI: 10.1021/acs.jpca.0c04005
85.
IR-UV double resonance spectroscopy of phenylacetylene-water complex revisited: observation of cyclic and π complexes
Sohidul Islam Mondal, Arghya Dey, Aniket Kundu and G. Naresh Patwari
Asian J. Phys. 2020, 29, 321–328.
84.
Probing the interaction between human serum albumin and the sodium dodecyl sulphate with fluorescence correlation spectroscopy
Vaishali Samant, Arghya Dey and G. Naresh Patwari
J. Chem. Sci. 2020, 132, 109. DOI: 10.1007/s12039-020-01816-y
83.
Hydrogen‐Bonded Complexes of Fluorophenylacetylenes: To Fluoresce or Not?
Sohidul Islam Mondal, Arghya Dey and G. Naresh Patwari
ChemPhysChem 2020, 21, 1711–1717. DOI: 10.1002/cphc.202000306
82.
Unraveling the Origin of Differentiable ‘Turn‐On’ Fluorescence Sensing of Zn2+ and Cd2+ ions with Squaramides
P. Lasitha, Souradip Dasgupta and G. Naresh Patwari
ChemPhysChem 2020, 21, 1564–1570. DOI: 10.1002/cphc.202000332
81.
π-Stacking Driven Aggregation and Folding of Squaramides
Saumik Sen, Arkaprabha Basu, Tirthendu Sen and G. Naresh Patwari
J. Phys. Chem. A 2020, 124, 5832–5839. DOI: 10.1021/acs.jpca.0c03120
80.
Internal electric fields in methanol [MeOH]2-6 clusters
Manjusha Boda and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2020, 22, 10917–10923. DOI: 10.1039/C9CP04571F
79.
Bend-to-break: Curvilinear proton transfer in phenol-ammonia clusters
Debopriya Sadhukhan, Anirban Hazra and G. Naresh Patwari
J. Phys. Chem. A 2020, 124, 3101–3108. DOI: 10.1021/acs.jpca.0c00102
78.
Hydration of fluorobenzenes: A molecular dynamics simulation investigation
Anuj Kumar and G. Naresh Patwari
J. Ind. Inst. Sci. 2020, 100, 221–230. DOI: 10.1007/s41745-019-00157-1
2019
77.
Progressive hydrophobicity of fluorobenzenes
Anuj Kumar, Jaladhar Mahato, Mayank Kumar Dixit and G. Naresh Patwari
J. Phys. Chem. B 2019, 123, 10083–10088. DOI: 10.1021/acs.jpcb.9b08057
76.
A liquid crucible model for aggregation of phenylacetylene in the gas phase
Saurabh Mishra, D. K. Sahoo, Po-Jen Hsu, Yoshuki Matsuda, Jer-Lai Kuo, Himansu S. Biswal and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2019, 21, 13623–13632. DOI: 10.1039/c8cp07738j
75.
Probing the role of dispersion energy on structural transformation of double-stranded xylo- and ribo-nucleic acids
Anuj Kumar and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2019, 21, 3842–3848. DOI: 10.1039/c8cp06305b
2018
74.
Electrostatics and dispersion in X-H···Y (X = C, N, O; Y = N, O) Hydrogen bonds and their role in X-H vibrational frequency shifts
Saumik Sen and G. Naresh Patwari
ACS Omega 2018, 3, 18518–18527. DOI: 10.1021/acsomega.8b01802
73.
Hydrogen bond induced enhancement of fermi resonances in N–H···N hydrogen bonded complexes of anilines
Saurabh Mishra, Jer-Lai Kuo and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2018, 20, 21557–21566. DOI: 10.1039/c8cp02448k
72.
Synthesis and structure of arylselenium(II) and aryltellurium(II) cations based on rigid 5-tert-butyl-1,3-bis-(N-pentylbenzimidazol-2’-yl)benzenes
V. Rani, M. Boda, S. Raju, G. Naresh Patwari, H. B. Singh and Ray J. Butcher
Dalton Trans. 2018, 47, 9114–9127. DOI: 10.1039/c8dt01148f
71.
The role of electronegativity on the extent of nitridation of group 5 metals as revealed by reactions of tantalum cluster cations with ammonia molecules
M. Arakawa, K. Ando, S. Fujimoto, S. Mishra, G. Naresh Patwari and A. Terasaki
Phys. Chem. Chem. Phys. 2018, 20, 13974–13982. DOI: 10.1039/c8cp00424b
2017
70.
π-Stacked dimers of fluorophenylacetylenes: Role of dipole moment
Sohidul Islam Mondal, Saumik Sen, Anirban Hazra and G. Naresh Patwari
J. Phys. Chem. A 2017, 121, 3383–3391. DOI: 10.1021/acs.jpca.7b00209
69.
Insights into acid dissociation of HCl and HBr with internal electric fields
M. Boda and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2017, 19, 7461–7464. DOI: 10.1039/c6cp08870h
68.
Elusive double-eight-ring zeolitic secondary building unit
S. K. Gupta, A. Ch. Kalita, A. A. Dar, S. Sen, G. Naresh Patwari and R. Murugavel
J. Am. Chem. Soc. 2017, 139, 59–62. DOI: 10.1021/jacs.6b11156
2016
67.
Internal electric fields in small water clusters [(H2O)n; n = 2–6]
S. Sen, M. Boda, S. V. Lata and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2016, 18, 16730–16737. DOI: 10.1039/c6cp02803a
66.
Three-fold C3- symmetric off-on fluorescent chemo-sensors for fluoride
P. Vishnoi, S. Sen, G. Naresh Patwari and R. Murugavel
J. Fluoresc. 2016, 26, 997–1005. DOI: 10.1007/s10895-016-1787-2
65.
Spectroscopic and ab initio investigation of C−H⋅⋅⋅N hydrogen-bonded complexes of fluorophenylacetylenes: Frequency shifts and correlations
A. Dey, S. I. Mondal, S. Sen and G. Naresh Patwari
ChemPhysChem 2016, 17, 2509–2515. DOI: 10.1002/cphc.201600343
64.
Probing the role of electrostatics of polypeptide main-chain in protein folding by perturbing N-terminal residue stereochemistry: DFT study with oligoalanine models
B. Goyal, K. R. Srivastava, A. Kumar, G. Naresh Patwari and S. Durani
RSC Adv. 2016, 6, 113611–113619. DOI: 10.1039/c6ra22870d
2015
63.
Octanuclear zinc phosphates with hitherto unknown cluster architectures: Ancillary ligand and solvent assisted structural transformations thereof
A. Dar, S. Sen, S. K. Gupta, G. Naresh Patwari and R. Murugavel
Inorg. Chem. 2015, 54, 9458–9469. DOI: 10.1021/acs.inorgchem.5b01308
62.
A Propargylbenzene dimer: C– H···π assisted π–π stacking
A. Kundu, S. Sen and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2015, 17, 9090–9097. DOI: 10.1039/c5cp00162e
61.
Spectroscopic and ab-initio investigation of 2,6-difluorophenylacetylene-amine complexes: Coexistence of C–H∙∙∙N and lone-pair∙∙∙π complexes and intermolecular coulombic decay
S. I. Mondal, A. Dey, S. Sen, G. Naresh Patwari and D. Ghosh
Phys. Chem. Chem. Phys. 2015, 17, 434–443. DOI: 10.1039/c4cp03445g
60.
Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes
P. Vishnoi, S. Sen, G. Naresh Patwari and R. Murugavel
New J. Chem. 2015, 39, 886–892. DOI: 10.1039/c4nj01093k
2014
59.
Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes
A. Dey, S. I. Mondal, S. Sen, D. Ghosh and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2014, 16, 25247–25250. DOI: 10.1039/c4cp04617j
58.
Fluorescence quenching studies of γ- butyrolactone binding protein (CprB) from streptomyces coelicolor A3(2)
A. Biswas, R. K. Swarnkar, B. Hussain, S. K. Sahoo, P. I. Pradeepkumar, G. Naresh Patwari and R. Anand
J. Phys. Chem. B 2014, 118, 10035–10042. DOI: 10.1021/jp503589h
57.
Studies of structural isomers o‑, m‑, and p‑fluorophenylacetylene by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy
V. S. Shivatare, A. Kundu, G. Naresh Patwari and W-B. Tzeng
J. Phys. Chem. A 2014, 118, 8277–8286. DOI: 10.1021/jp501059c
56.
Water-induced adsorption of carbon monoxide and oxygen on the gold dimer cation
T. Ito, G. Naresh Patwari, M. Arakawa and A. Terasaki
J. Phys. Chem. A 2014, 118, 8293–8297. DOI: 10.1021/jp501111f
55.
Selective fluorescence sensing of polynitroaromatic explosives using triaminophenylbenzene scaffolds
P. Vishnoi, M. G. Walawalkar, S. Sen, A. Datta, G. Naresh Patwari and R. Murugavel
Phys. Chem. Chem. Phys. 2014, 16, 10651–10658. DOI: 10.1039/c4cp00930d
2013
54.
Phenylacetylene dimer: Ab initio and DFT study
G. Naresh Patwari, P. Venuvanalingam and M. Kolaski
Chem. Phys. 2013, 415, 150–155. DOI: 10.1016/j.chemphys.2013.01.001
53.
Binary complexes of ammonia with phenylacetylenes: A combined experimental and computational approach to explore multiple minima on intermolecular potentials
A. Dey, S. I. Mondal and G. Naresh Patwari
ChemPhysChem 2013, 14, 746–753. DOI: 10.1002/cphc.201200797
2012
52.
Infrared-optical double resonance spectroscopic investigation of trifluoromethylphenols and their water complexes
A. Dey and G. Naresh Patwari
J. Phys. Chem. A 2012, 116, 6996–7003. DOI: 10.1021/jp301208z
51.
Intermolecular structure on binary complexes of water with phenylacetylene and its substituted analogs. A combined spectroscopic and ab-initio investigation
S. Maity and G. Naresh Patwari
Ind. J. Phy. 2012, 86, 173–179. DOI: 10.1007/s12648-012-0034-1
2011
50.
Estimation of interfacial acidity of sodium dodecyl sulfate micelles
A. Dey and G. Naresh Patwari
J. Chem. Sci. 2011, 123, 909–918. DOI: 10.1007/s12039-011-0185-1
49.
A π-stacked phenylacetylene dimer
S. Maity, R. Sedlak, M. A. Addicoat, S. Irle, P. Hobza and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2011, 13, 16706–16712; Phys. Chem. Chem. Phys. 2011, 13, 21651-21652. DOI: 10.1039/c1cp20677j
48.
Interaction of alcohols with 2- fluoro- and 4-fluoro- phenylacetylenes: Infrared-optical double resonance spectroscopic and computational investigation
S. Maity, D. K. Maity and G. Naresh Patwari
J. Phys. Chem. A 2011, 115, 11229–11237. DOI: 10.1021/jp204286b
47.
Probing structures of small gold cluster cations with dinitrogen
G. Naresh Patwari, T. Ito, K. Egashira and A. Terasaki
Chem. Asian J. 2011, 6, 1834–1838. DOI: 10.1002/asia.201000901
46.
Do N-heterocyclic aromatic rings prefer π-stacking?
S. Maity, G. Naresh Patwari, S. Karthikeyan and K. S. Kim
Phys. Chem. Chem. Phys. 2011, 13, 5514–5525. DOI: 10.1039/c0cp02015j
45.
Phenylacetylene: A hydrogen bonding chameleon
S. Maity, M. Guin, P. C. Singh and G. Naresh Patwari
ChemPhysChem 2011, 12, 26–46. DOI: 10.1002/cphc.201000630
2010
44.
A combined spectroscopic and ab-initio investigation of phenylacetylene- methylamine complex. Observation of σ and π type hydrogen-bonded configurations and fluorescence quenching by weak C–H∙∙∙N hydrogen bonding
S. Maity, A. Dey, G. Naresh Patwari, S. Karthikeyan and K. S. Kim
J. Phys. Chem. A 2010, 114, 11347–11352.
43.
Hydrogen bonding to multifunctional molecules: Spectroscopic and ab-initio investigation of 4-ethynylbenzonitrile- (water)1-3 complexes
S. Maity and G. Naresh Patwari
J. Phys. Chem. A 2010, 114, 8337–8344.
42.
Infrared-optical double resonance spectroscopic measurements on 2-(2′-pyridyl)benzimidazole and its hydrogen bonded complexes with water and methanol
M. Guin, S. Maity and G. Naresh Patwari
J. Phys. Chem. A 2010, 114, 8323–8330.
41.
Binary complexes of tertiary amines with phenylacetylene. Dispersion wins over electrostatics
S. Maity, G. Naresh Patwari, S. Karthikeyan and K. S. Kim
Phys. Chem. Chem. Phys. 2010, 12, 6150–6156.
2009
40.
A π-stacked phenylacetylene and 1,3,5-triazine hetero dimer: A combined spectroscopic and ab-initio investigation
Mridula Guin, G. Naresh Patwari, S. Karthikeyan and K. S. Kim
Phys. Chem. Chem. Phys. 2009, 11, 11207–11212.
39.
Infrared-optical double resonance spectroscopic measurements and high level ab-initio calculations on a binary complex between phenylacetylene and borane- trimethylamine. Understanding the role of C–H∙∙∙π interactions
Surajit Maity, Robert Sedlak, Pavel Hobza and G. Naresh Patwari
Phys. Chem. Chem. Phys. 2009, 11, 9738–9743.
38.
Hydrogen-bonded complexes of phenylacetylene with water, methanol, ammonia and methylamine. The origin of methyl group induced hydrogen bond switching
Robert Sedlak, Pavel Hobza and G. Naresh Patwari
J. Phys. Chem. A 2009, 113, 6220–6225.
37.
Hydrogen bonding to multifunctional molecules: Spectroscopic and ab-initio investigation of water complexes of fluorophenylacetylenes
Surajit Maity and G. Naresh Patwari
J. Phys. Chem. A 2009, 113, 1760–1769.
2008
36.
Water complexes of styrene and 4-fluorostyrene: A combined electronic, vibrational spectroscopic and ab- initio Investigation
Prashant Chandra Singh, Surajit Maity and G. Naresh Patwari
J. Phys. Chem. A 2008, 112, 9702–9707.
35.
Infrared-optical double resonance spectroscopy: A selective and sensitive tool to investigate structures of molecular clusters in the gas-phase
Prashant Chandra Singh and G. Naresh Patwari
Curr. Sci. 2008, 95, 469–474.
34.
Infrared-optical double- resonance measurements on O-H∙∙∙H-Ge dihydrogen-bonded phenol- triethylgermanium hydride complex in the gas phase
Prashant Chandra Singh, Dilip K. Maity and G. Naresh Patwari
J. Phys. Chem. A 2008, 112, 5930–5934.
33.
IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching
Prashant Chandra Singh and G. Naresh Patwari
J. Phys. Chem. A 2008, 112, 5121–5125.
32.
Electronic and vibrational spectroscopic investigation of phenylacetylene-amine complexes. Evidence for the diversity in the intermolecular structures
Prashant Chandra Singh and G. Naresh Patwari
J. Phys. Chem. A 2008, 112, 4426–4431.
31.
The structure of phenylacetylene-water complex as revealed by IR-UV double resonance spectroscopy
Prashant Chandra Singh, Biswajit Bandyopadhyay and G. Naresh Patwari
J. Phys. Chem. A 2008, 112, 3360–3363.
2007
30.
Photoelectron spectroscopy of hydrated hexafluorobenzene anions
Soren N. Eustis, D. Wang, Kit H. Bowen and G. Naresh Patwari
J. Chem. Phys. 2007, 127, 114312.
29.
Cyclohexane as a Li+ selective ionophore
G. Naresh Patwari and James M. Lisy
J. Phys. Chem. A 2007, 111, 7585–7588.
28.
Proton affinity correlations between hydrogen and dihydrogen bond acceptors
Prashant Chandra Singh and G. Naresh Patwari
J. Phys. Chem. A 2007, 111, 3178–3183.
27.
Theoretical investigation of in- plane hydrogen-bonded complexes of ammonia with partially substituted fluorobenzenes
Prashant Chandra Singh, Mohana Ray and G. Naresh Patwari
J. Phys. Chem. A 2007, 111, 2772–2777.
2006
26.
Complete infrared spectroscopic characterization of phenol-borane-trimethylamine dihydrogen-bonded complex in the gas phase
G. Naresh Patwari, Asuka Fujii and Naohiko Mikami
J. Chem. Phys. 2006, 124, 241103.
25.
The C–H∙∙∙H–B dihydrogen bonded borane-trimethylamine dimer: A computational study
Prashant Chandra Singh and G. Naresh Patwari
Chem. Phys. Lett. 2006, 419, 265–268.
24.
Theoretical investigation of C–H∙∙∙H–B dihydrogen bonded complexes of acetylenes with borane-trimethylamine
Prashant Chandra Singh and G. Naresh Patwari
Chem. Phys. Lett. 2006, 419, 5–9.
2005
23.
Proton affinities of borane-amines: Consequences on dihydrogen bonding
G. Naresh Patwari
J. Phys. Chem. A 2005, 109, 2035–2038.
2004
22.
Structure of hydrated clusters of tetrahydroisoquinoline THIQ-(H2O)n=1,3 investigated by jet spectroscopy
N. Guchhait, S. Banerjee, A. Chakraborty, D. Nath, G. Naresh Patwari and M. Chowdhury
J. Chem. Phys. 2004, 120, 9514–9523.
2003
21.
IR photo-dissociation spectroscopy of Na+[H2O]m[C6F6]n clusters: Evidence for separation of aqueous and non- aqueous phases
G. Naresh Patwari and James M. Lisy
J. Phys. Chem. A 2003, 107, 9495–9498.
20.
Mimicking the solvation of aqueous Na+ in the gas phase
G. Naresh Patwari and James M. Lisy
J. Chem. Phys. 2003, 118, 8555–8558.
19.
Electronic structure dependence of intramolecular vibrational redistribution in para substituted benzenes
G. N. Patwari and S. Wategaonkar
Proc. Indian. Natl. Sci. Acad. 2003, 69A, 61–82.
18.
Vibrational predissociation in aminophenol-argon1 complex
P. S. Meenakshi, N. Biswas, G. N. Patwari and S. Wategaonkar
Chem. Phys. Lett. 2003, 369, 419–427.
2002
17.
Vibrational spectroscopic investigation of dihydrogen-bonds in gas phase
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
Bull. Pol. Acad. Sci-Chem. 2002, 50, 423–434.
16.
Vibrational spectroscopic evidences of unconventional hydrogen bonds
Asuka Fujii, G. Naresh Patwari, Takayuki. Ebata and Naohiko Mikami
Int. J. Mass. Spectrom. 2002, 220, 289–312.
15.
Gas phase dihydrogen bonding: Clusters of borane-amines with phenol and aniline
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
Chem. Phys. 2002, 283, 193–207.
14.
Fluorescence enhancement detected IR (FEDIR) spectroscopy: A new background free IR spectroscopic technique for highly fluorescent molecules
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
Chem. Phys. Lett. 2002, 361, 453–456.
13.
Dihydrogen bonded phenol- borane-dimethylamine complex: An experimental and theoretical study
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
J. Chem. Phys. 2002, 116, 6056–6063.
2001
12.
Dehydrogenation reaction from a dihydrogen bonded precursor complex in the gas phase
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
J. Phys. Chem. A 2001, 105, 10753–10758.
11.
Spectroscopic investigation of tetrahydroisoquinoline in supersonic jet
B. Chakraborty, N. Guchhait, S. Banerjee, D. Nath, G. Naresh Patwari and M. Chowdhury
J. Chem. Phys. 2001, 115, 5184–5191.
10.
Electronic and vibrational spectroscopy of dihydrogen bonded 2-pyridone-borane-trimethylamine complex in supersonic jets
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
J. Phys. Chem. A 2001, 105, 8642–8645.
9.
Franck-Condon spectral calculation on trans-hydroquinone
G. N. Patwari, S. Wategaonkar and M. Durga Prasad
Chem. Phys. Lett. 2001, 344, 229–235.
8.
Gas phase dihydrogen bonded phenol-borane-trimethylamine complex
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
J. Chem. Phys. 2001, 114, 8877–8879.
2000
7.
Evidence of a dihydrogen bond in gas phase: Phenol-borane-dimethylamine complex
G. Naresh Patwari, Takayuki Ebata and Naohiko Mikami
J. Chem. Phys. 2000, 113, 9885–9888.
6.
Spectroscopy and IVR in the S1 state of jet-cooled p-alkoxyphenols
G. N. Patwari, S. Doraiswamy and S. Wategaonkar
J. Phys. Chem. A 2000, 104, 8466–8474.
5.
Does inversion symmetry influence IVR?
G. N. Patwari and S. Wategaonkar
Chem. Phys. Lett. 2000, 323, 460–466.
4.
IVR in the S1 state of jet-cooled cis- and trans-p-dimethoxybenzene
G. N. Patwari, S. Doraiswamy and S. Wategaonkar
Chem. Phys. Lett. 2000, 316, 433–441.
1999
3.
Electronic relaxation in the S1 state of jet-cooled p-alkoxyanilines
G. N. Patwari, S. Doraiswamy and S. Wategaonkar
Chem. Phys. Lett. 1999, 305, 381–388.
2.
Spectroscopy and intramolecular vibrational redistribution in the S1 state of jet-cooled para-alkoxyanilines
(NH2-C6H4-OCnH2n+1; n = 4, 5, 6)
G. N. Patwari, S. Doraiswamy and S. Wategaonkar
Phys. Chem. Chem. Phys. 1999, 1, 2279–2286.
1998
1.
Hole-burning spectroscopy of jet-cooled hydroquinone
G. N. Patwari, S. Doraiswamy and S. Wategaonkar
Chem. Phys. Lett. 1998, 289, 8–12.